Get Adobe Flash player
    Принимаются SMS-пожертвования на развитие ресурса     Копирование материалов     разрешено с обязательной ссылкой     на этот сайт     Принимаются SMS-пожертвования на развитие ресурса    

Магнитная жидкость

Магнитная жидкость

Классическое представление формы и геометрии магнитного поля знакомо из курса средней общеобразовательной школы. Оказывается форма магнитного поля имеет ярко выраженную объемно-геометрическую структуру. Эксперименты с магнитной жидкостью наглядно это демонстрируют.

 

Под термином «магнитная жидкость» обычно подразумевается жидкость, притягиваемая магнитом, то есть реагирующая на магнитное поле. Более того, в сильных магнитных полях эта жидкость может утратить текучесть, став подобной твёрдому телу. Многие слышали о таких веществах, но большинство считают такие вещества экзотическим и дорогим продуктом высоких технологий, доступным лишь избранным счастливчикам. Это справедливо, но лишь отчасти. Иногда вполне достаточно менее качественного, но зато более чем доступного продукта, сделанного за несколько минут буквально из мусора.

«Профессиональная» магнитная жидкость обычно представляет собой коллоидный раствор мельчайших частиц магнитного материала, то есть устойчивую и неосаждающуюся с течением времени взвесь твёрдых частиц в жидкости. Чаще всего в качестве магнитного материала используется магнетит (Fe3O4), а размер его частиц как правило составляет от 2 до 30 нанометров (впрочем, встречаются упоминания и о более крупных частицах — вплоть до 10 микрометров).

Для предотвращения слипания и осаждения магнитных частиц используются различные типы поверхностно-активных веществ (ПАВ), в зависимости от вида базовой жидкости, образующей основу коллоидного раствора. В свою очередь, выбор базовой жидкости обусловлен предполагаемым назначением готового продукта и желаемым набором его свойств (вязкость, плотность, термостойкость, теплопроводность и т.д.). Помимо воды, наиболее популярными базовыми жидкостями для технических применений являются керосин и жидкие технические масла, для медико-биологических — различные типы органических жидкостей.

Из-за частиц магнетита магнитные жидкости обычно представляют собой непрозрачные густые субстанции чёрного цвета. Для снижения вязкости можно уменьшить концентрацию магнетита, однако при этом, естественно, снижаются и магнитные свойства жидкости. Использование вместо магнетита других магнитных наполнителей может придать жидкости окраску, отличную от чёрной (обычно разные оттенки жёлто-коричневой гаммы), но кристальной прозрачностью ни одна из таких жидкостей похвастаться не может.

Трудоёмкость получения «настоящих» магнитных жидкостей впечатляет — например, для механического измельчения частиц до нужного размера экспериментаторам требовалось 1000 часов работы шаровой мельницы (1.5 месяца без перерыва!). Другие методы тоже достаточно экзотичны, скажем, измельчение частиц электроконденсационным методом основано на создании вольтовой дуги в жидкости между погружёнными в неё электродами, промежуток между которыми заполнен измельчаемым материалом. Есть и чисто химические методы, однако и там не обходится без многократного центрифугирования продуктов реакции. Зато и результат того стоит: полученные таким образом жидкости могут сохранять свои свойства в течение многих лет.


Магнитная жидкость своими руками

Изготовление магнитной жидкости химическим путём

Для тех, кто с химией на «ты», рекомендую именно упомянутый выше химический метод, благо реактивы не слишком дефицитные.

Для этого необходимо иметь следующее оборудование и химическую посуду.

  1. Аптечные весы с набором разновесов.
  2. Две колбы (с круглым или плоским дном).
  3. Химический стакан.
  4. Фильтровальную бумагу и воронку.
  5. Достаточно сильный магнит, желательно кольцевой (из динамика).
  6. Небольшую (лабораторную) электроплитку.
  7. Фарфоровый стаканчик на 150–200 мл.
  8. Термометр с диапазоном измерения температуры до 100°С.
  9. Индикаторную бумагу.
  10. Для получения более качественной магнитной жидкости потребуется маленькая настольная центрифуга (на 4000 об/мин).

Кроме того, необходимы следующие реагенты.

  1. Соли двух- и трёхвалентного железа (хлорные или сернокислые).
  2. Аммиачная вода 25%-ной концентрации (нашатырный спирт).
  3. Натриевая соль олеиновой кислоты (олеиновое мыло) в качестве ПАВ.
  4. Дистиллированная вода.

Вот краткое изложение этой методики. Цифры приведены в расчёте на 10 граммов твёрдой магнитной фазы (магнетита) в магнитной жидкости.

1. Растворите в 500 мл дистиллированной воды (можно при слабом подогреве и несильном помешивании) 24 грамма трехвалентной соли железа (хлорного или сернокислого) и 12 граммов двухвалентной соли железа (хлористого или сернокислого).
2. Полученный раствор отфильтруйте на воронке в другую колбу через фильтровальную бумагу для отделения механических примесей.
3. В первую колбу, предварительно промыв её водой, залейте (осторожно!) около 100–150 мл аммиачной воды (работу лучше проводить под тягой или на открытом воздухе).
4. Очень осторожно, тонкой струёй вливайте из второй колбы отфильтрованный раствор в первую, содержащую аммиачную воду, и интенсивно взбалтывайте её.
Коричневато-оранжевый раствор мгновенно превратится в суспензию чёрного цвета. Долейте немного дистиллированной воды и поставьте колбу с образовавшейся смесью на постоянный магнит на полчаса.
5. После того, как образовавшиеся частицы магнетита в виде «дождя» под действием сил магнитного поля выпадут на дно колбы, осторожно слейте около двух третей раствора в канализацию, удерживая осадок магнитом, и снова залейте в колбу дистиллированную воду. Хорошенько её взболтайте и опять поставьте на магнит. Операцию повторяйте до тех пор, пока pH раствора не достигнет 7.5–8.5 (нежно-зелёная окраска индикаторной бумаги фирмы «Лахема» при смачивании её промывным раствором).
6. После того, как последней промывной раствор на две трети слит, загущённую суспензию отфильтруйте через бумажный фильтр на воронке и полученный осадок чёрного цвета смешайте с 7.5 грамма натриевой соли олеиновой кислоты.
7. Смесь поместите в фарфоровый стаканчик и прогрейте до 80°С на электрической плитке, хорошо перемешивая, в течение часа.
8. Полученную «патоку» чёрного цвета охладите до комнатной температуры. Долейте 50–60 мл дистиллированной воды и тщательно размешайте получившуюся коллоидную систему.
9. Разведённую водой «патоку» подвергните центрифугированию при 4000 об/мин в течение одного часа или ещё раз поставьте стаканчик с ней на кольцевой магнит. Перелейте полученную магнитную жидкость в химический стакан и поднесите снаружи магнит. Жидкость потянется за ним. После того, как Вы уберёте магнит, на стекле останется след от жидкости. Он должен иметь коричневато-оранжевую окраску и не содержать посторонних частиц.
10. Хранить водную магнитную жидкость желательно в светонепроницаемой таре в прохладном месте.

Прежде чем приступать к изготовлению, советую посмотреть страничку http://wsyachina.narod.ru/technology/magnetic_liquid.html, там описана эта же методика, а в конце автор странички делится своим опытом. В частности, в качестве ПАВ он использовал самую обычную «Fairy» (жидкость для мытья посуды). Главное — обратите особое внимание на рекомендации по безопасности и соблюдайте необходимую осторожность!

Изготовление магнитной жидкости механическим способом

Между тем, изготовить вполне приемлемую для некоторых применений жидкость, реагирующую на магнитное поле, по силам практически каждому — без каких-либо реактивов и всего за несколько минут. Ещё раз подчеркну — лишь для некоторых применений, и качество её существенно хуже, чем у полученной химическим путём. В частности, консистенция продукта получается такой, что его скорее можно назвать не «жидкостью», а «жижей». Да и время осаждения магнитных частиц достаточно мало — обычно от нескольких секунд до нескольких минут. Зато никакой химии и экзотических технологий — лишь просеивание и смешивание. Кстати, когда магнитными жидкостями впервые заинтересовались в середине XX века, то их самые первые образцы как раз и были получены примерно таким путём.

Для того, чтобы сделать такую «магнитную жижу», требуется всего лишь набрать необходимое количество мелких стальных опилок. Чем мельче, тем лучше, поэтому наиболее подходящей является стальная пыль, остающаяся после работы «болгарки» или точила. Пыль собирается магнитом (не слишком сильным — не столько для предотвращения большого остаточного намагничивания, сколько для того, чтобы железные опилки не так интенсивно стремились к нему и увлекали с собой поменьше немагнитной пыли). Затем для отсева грязи и крупных фракций собранное можно просеять через ткань (скажем, поместить в тканевый мешочек и протрясти его над расстеленной газетой; на газете чуть сбоку снова ставится достаточно сильный магнит, улавливающий проскочившие через ткань стальные пылинки, а мелкая немагнитная грязь пролетает прямо вниз мимо магнита; крупные частицы грязи и большие стальные опилки остаются на ткани). Чем плотнее ткань, тем мельче будет просеянная пыль, но тем дольше придётся трясти мешочек. Для механизации процесса можно попытаться продуть пылинки через ткань мешочка выхлопом пылесоса, но это уже потребует подготовки направляющих, отклоняющих и гасящих вышедшую из мешочка струю воздуха приспособлений (скажем, из пустых пластиковых бутылок от питьевой воды, лучше с широким горлышком и объёмом 5-8 литров). Поэтому о «механизированном» варианте стоит думать лишь при достаточно больших объёмах изготавливаемого «продукта», для нескольких грамм магнитной жидкости это вряд ли будет оправдано. Конечно, центрифугирование в жидкости обеспечит гораздо лучшую сепарацию частиц, но плотную ткань и пылесос можно найти практически в каждом доме, а вот центрифуги на несколько тысяч оборотов в минуту почему-то распространены не так широко. Если собранная пыль достаточно чистая и однородная, а требования к качеству «магнитной жижи» совсем невысокие, то просеивание вообще можно не делать.

Ещё раз подчеркну — стальные частички должны быть как можно мельче. Для получения мелкой стальной пыли следует использовать мелкозернистый (доводочный) точильный круг. В качестве ориентира можно предложить следующее — при рассмотрении невооружённым глазом нельзя определить форму пылинок, на белой бумаге они выглядят мельчайшими точками. Если форма опилок хорошо различима (при нормальном зрении обычно это соответствует размерам от 0.1..0.3 мм и больше), то такие опилки слишком крупны, они очень быстро осядут и будут практически неподвижными! Зато такие крупные опилки удобно использовать в сухом виде для изучения силовых линий магнитного поля.

Отобранная стальная пыль заливается жидкостью, хорошо смачивающей металл. Это может быть обычная вода — желательно, насыщенная поверхностно-активными веществами, то есть мылом или другим моющим средством (пенообразование здесь вредно, поэтому оно должно быть как можно меньше!). Но во избежание быстрой коррозии железных пылинок, способной просто-напросто «съесть» их за несколько дней, для стали лучше использовать жидкое машинное масло. Вполне подойдёт бытовое — то, что используется для смазки швейных машинок. Как вариант, можно использовать и тормозную жидкость, сохраняющую свои свойства в очень широком диапазоне температур. Однако следует помнить, что тормозная жидкость весьма гигроскопична (хотя здесь это не так важно), и в открытом сосуде из неё испаряются летучие фракции, отнюдь не полезные для здоровья, — поэтому работать с ней лучше в хорошо проветриваемом помещении или на открытом воздухе.

Концентрация стальной пыли в жидкости должна быть, с одной стороны, не слишком высокой, чтобы жидкость не стала чересчур густой и вязкой, а с другой стороны, не слишком низкой, иначе перемещение магнитных частиц не сможет увлечь с собой сколько-нибудь заметный объём жидкости. Она подбирается опытным путём с помощью постепенного добавления опилок в жидкость, тщательного перемешивания и проверки магнитом. Лучше получить небольшой избыток базовой жидкости, нежели её недостаток, так как в последнем случае подвижность полученной субстанции уменьшается очень заметно.

Подвижность частиц такой магнитной жидкости определяется величиной силы смачивания металла жидкостью, «изолирующей» металлические частички друг от друга и обеспечивающей их относительно свободное перемещение. Ещё лучше смачивают поверхность пылинок ПАВ (поверхностно-активные вещества), именно поэтому они и используются в «профессиональных» составах. В сильных магнитных полях сила взаимного притяжения частиц может превысить силу смачивания, и тогда частички начнут непосредственно контактировать друг с другом, а жидкость «затвердеет», став в чём-то подобной мокрому песку. Конкретная величина критической силы магнитного поля зависит как от магнитных свойств используемого металла, так и от силы смачивания металла базовой жидкостью или ПАВ, а также от температуры жидкости и размеров металлических частиц (более крупные «слипаются» быстрее, поскольку обладают меньшей удельной поверхностью на единицу массы; кроме того, крупные опилки легко оседают на дно, в то время как особо мелкие пылинки могут поддерживаться во взвешенном состоянии броуновским движением молекул базовой жидкости). При снятии магнитного поля подвижность жидкости восстановится, если остаточная намагниченность будет не слишком большой.

Наконец, надо сказать, что магнитная жидкость из железной пыли получается не только весьма густой, но и обладает высокими абразивными свойствами, поэтому её проблематично прокачивать по каким-либо трубкам, зато она легко может вывести из строя подшипники и рабочие поверхности перекачивающих её насосов (оптимальным типом насоса является шестерёнчатый вытесняющий насос, аналогичный масляным насосам в автомобильных двигателях). Абразивное действие существенно снижается, если просвет между взаимно движущимися деталями превышает размер самых крупных частиц хотя бы в полтора-два раза. Весьма устойчивы к износу в данной ситуации пара материалов «твёрдый металл — прочный упругий пластик». Пластик должен быть именно упругим, как твёрдая резина или фторопласт, но не таким жёстким, как текстолит или эбонит (и конечно, быть химически устойчивым к воздействию базовой жидкости).

Впрочем, во многих случаях эти особенности «магнитной жижи» являются не принципиальными, а многие эффекты проявляются в ней также, как и в «настоящих» магнитных жидкостях. В частности, прижатый ко дну магнит после освобождения успешно всплывает к центру жидкости даже через много минут после завершения осаждения магнитных частиц (правда, в осевшей жидкости это всплытие может продлиться несколько минут, а то и часов). Если тот же магнит, наоборот, положить на поверхность, то он будет погружаться, снова стремясь к центру жидкости (точнее, к центру области, занятой металлическими частицами).

И последнее замечание. Лёгкое потряхивание или постукивание по стенке сосуда существенно увеличивает подвижность «жижи». Если же встряхивать руками не хочется, то подойдёт любой источник слабой вибрации — вплоть до звуковой колонки-сабвуфера, на которую надо подать мощный низкочастотный сигнал (правда, соседям по дому это может сильно не понравиться)! На таком импровизированном «вибростенде» даже отстоявшаяся и малоподвижная «жижа» проявляет неплохую текучесть.