Get Adobe Flash player
    Принимаются SMS-пожертвования на развитие ресурса     Копирование материалов     разрешено с обязательной ссылкой     на этот сайт     Принимаются SMS-пожертвования на развитие ресурса    

Электронная промышленность

Некоторые сведения об использовании фоторезистивных технологий в современной электронной промышленности…


Фотолитография (ФЛ) — это технологический процесс (ТП), основанный на использовании фотохимических явлений, которые происходят в нанесенном на подложку слое фоторезиста (ФР) (Примечание. В литературе можно также встретить термин «актинорезист») при его обработке ультрафиолетовым (УФ) излучением через маску (фотошаблон (ФШ)) и последующей операции формирования маски в слое фоторезиста и травлении технологического слоя через маску в ФР.

Основными параметрами, определяющими технологический уровень ФЛ, являются:

  • минимальный элемент изображения и точность его воспроизведения в ФР по полю изображения, по подложке и в партии обрабатываемых подложек;
  • погрешность совмещения топологических слоев; воспроизводимость формы (рельефа) элементов, протравленных в технологическом слое через маску в ФР;
  • плотность дефектов в технологическом слое, внесенных в процессе литографии.

Формирование слоя фоторезиста

Данный процесс должен обеспечить получение равномерных по толщине бездефектных фотослоев с хорошей адгезией к подложке при сохранении исходных свойств применяемых ФР.

1. Подготовка поверхности подложек.

Рис. 1. Этапы (I, II, III) и операции (1-8) литографического процесса: I — формирование слоя резиста; II — передача рисунка на слой резиста; III — передача рисунка на материал ИМС

 

 


Рис. 2. Классификация литографических процессов

 

 


Рис. 3. Клин травления при передаче рисунка с фотомаски на пленку ФР

 

 


Рис. 4. Поверхность, смачиваемая жидкостью: а) плохо; 6) хорошо


Подготовка поверхности подложки к нанесению ФР состоит из нескольких операций и является индивидуальной для каждого конкретного случая в зависимости от материала подложки, технологии его получения, состояния поверхности и дальнейшего назначения маски. Под подложкой в фотолитографических процессах подразумевается тот материал, на котором формируют резистивный слой. Если фотомаска используется для локального травления, то качество передачи рисунка на подложку зависит в основном от адгезии маски к подложке и от способности тра-вителя проникать под слой фотомаски по границам окон. Адгезия фотослоя увеличивается с повышением смачивания поверхности подложки ФР. Проникновение травителя под слой фотомаски, приводящее к растравливанию подложки (рис. 3), в свою очередь, зависит от смачивания поверхности подложки травителем или водой. Критерием смачиваемости является краевой угол смачивания поверхности твердого тела жидкостью (рис. 4). Оптимально подготовленной к ФЛ поверхностью является поверхность, которая хорошо смачивается ФР и плохо смачивается водой.

Эти условия не противоречат друг другу для большинства полимерных ФР, так как они, будучи сами гидрофобными, хорошо смачивают гидрофобные, а не гидрофильные поверхности. Таким образом, подготовленная к нанесению фоторезиста поверхность должна быть очищена от загрязнений, а также должна обладать свойством гидрофобности. Требования к очистке, содержащиеся в ОСТ 107.750878.001-87, состоят в следующем.

1. Очистка подложек должна включать:

  • обработку моющими средствами;
  • промывку;
  • просушку.

2. Выбор моющих средств для обработки подложек, за исключением полиамидных, производится в соответствии с ОСТ 4Г 0.029.233-84. Обработку подложек из керамики нужно производить с использованием ультразвукового (УЗ) воздействия на частоте не менее 18 кГц.

3. Обработку полиамидных подложек производить в хромовой смеси (серная кислота 1000 мл, вода деионизованная 100 мл, калий двухромовокислый 75 г).

4. Промывку подложек производить в проточной дистиллированной или деионизо-ванной воде.

5. Сушку подложек, за исключением полиамидных, производить при температуре 120 +/-5С в течение 15 +/-5 мин. Допускается производить сушку подложек в центрифуге при использовании специальных линий очистки подложек, в которых предусмотрена такая сушка.

6. Сушку (отжиг) полиамидных подложек производить в среде инертного газа при температуре не менее 200С в течение 60 +/-5 мин.

7. Поверхность подложки, прошедшей очистку, должна быть чистой, без подтеков, пятен и инородных предметов.

8. Очистку подложки следует производить непосредственно перед нанесением на нее слоев. В обоснованных случаях допускается перерыв между окончанием очистки и началом нанесения слоев, который не должен превышать 6 ч при хранении подложек в эксикаторе с силикагелем или 24 ч при хранении в шкафу с защитной средой.

Нанесение фоторезиста.

Нанесенный на предварительно подготовленную поверхность подложек слой ФР должен быть однородным по толщине по всему их полю, без проколов, царапин (т. е. быть сплошным) и иметь хорошую адгезию.

Наносят слой ФР в максимально обеспыленной среде. Перед употреблением обязательно фильтруют в специальных фильтрах.

Существуют следующие методы нанесения ФР:

  • центрифугирование;
  • распыление (пульверизация);
  • электростатический метод;
  • окунание;
  • полив;
  • накатка.

Наиболее распространенными являются первые два метода, о которых мы подробно и расскажем, остальные затронем только с точки зрения их достоинств и недостатков.

Метод центрифугирования (рис. 5)

Центрифугирование в основном применяется для круглых подложек, т. е. пластин кремния и других полупроводников, но с помощью несложной доработки установки для данного метода нанесения ФР можно приспособить и для прямоугольных пластин (рис. 6).

Рис. 5. Схема установки для нанесения слоя. ФР центрифугированием:1- дозатор (капельница); 2 — подложка; 3 — столик; 4 — кожух для сбора избытка ФР; 5 — вакуумные уплотнители; 6 — электродвигатель; 7 — трубопровод к вакуумному насосу

 

 

Рис. 6. Доработанная рабочая камера установки для нанесения ФР центрифугированием на прямоугольные подложки

На несложном оборудовании наносят слои ФР, погрешность толщины которых составляет 5%. На подложку 2, которая устанавливается на столике 3 центрифуги и удерживается на нем вакуумным присосом, ФР подается капельницей-дозатором 1. (Примечание. Время между нанесением жидкого ФР и включением центрифуги должно быть минимальным (0,5-1 с), чтобы вязкость резиста не менялась в результате испарения растворителя). Когда столик приводится во вращение, ФР растекается тонким слоем по поверхности подложки, а его излишки сбрасываются с нее и стекают по кожуху 4. При вращении центрифуги происходит испарение растворителя и вязкость ФР возрастает, поэтому он не полностью сбрасывается с поверхности подложки. Зависимость оставшегося на поверхности жидкого слоя ФР зависит от частоты вращения центрифуги и кинематической вязкости ФР…

Зависимость толщины наносимого слоя от частоты вращения столика центрифуги при различных коэффициентах вязкости ФР показана на рис. 7.

С увеличением скорости центрифугирования уменьшается не только среднее значение толщины ФР, но и ее разброс. При достижении некоторого числа оборотов толщина пленки становится постоянной, а рассеивание минимальным. Это число оборотов называется критическим. Оно соответствует равновесию центробежных и когезионных сил при пленкообразовании.

Рис. 7. Зависимость толщины слоя ФР от частоты вращения центрифуги при различных значениях его кинематической вязкости

Большое рассеяние (невоспроизводимость) значений толщины при числе оборотов, которое меньше критического, можно объяснить краевым утолщением слоя фоторезиста, которое с увеличением частоты вращения уменьшается и смещается к периферии подложки. На рис. 8 изображены профили ФР-слоя, полученные на подложках при различных частотах вращения центрифуги. Из рисунка видно, что при малом числе оборотов краевое утолщение занимает значительную часть подложки, а при большом числе оно практически сводится к нулю. Поскольку максимальная разрешающая способность процесса фотолитографии достигается при минимальной толщине ФР, то целесообразно поддерживать частоту оборотов, превышающую критическое значение. Однако от толщины ФР-слоя зависит его устойчивость к агрессивным средам, которую нельзя обеспечить при минимальной толщине ФР. Таким образом, при выборе толщины слоя ФР, а следовательно, и значения критического числа оборотов, следует исходить не из минимальной, а из оптимальной толщины пленки.

Рис. 8. Профили фоторезистивного слоя, полученные на подложках при разных скоростях вращения центрифуги: 1 — 200 об/мин; 2 -400 об/мин; 3-1000 об/мин

Необходимо отметить, что время центрифугирования мало влияет на параметры слоя. Для формирования слоя обычно достаточно 20-30 с.

Выбирая толщину слоя фоторезиста, необходимо учитывать, что он должен обладать высокой разрешающей способностью (чем меньше толщина, тем выше разрешающая способность) и не терять стойкости к трави-телю. Кроме того, слой фоторезиста не должен иметь дефектов в виде проколов, число которых с уменьшением толщины увеличивается. Следовательно, толщина слоя ФР должна быть возможно минимальной, но достаточной для обеспечения его стойкости к травителю, плотности и малой дефектности (в виде проколов).

Наносимые центрифугированием слои ФР могут иметь дефекты в виде «комет», образующиеся в том случае, если на поверхности подложек имелись остаточные загрязнения или ФР был плохо отфильтрован. Такие дефекты выглядят как направленные от центра локальные утолщения или разрывы слоя ФР.

Достоинствами центрифугирования являются:

  • простота;
  • отработанность;
  • достаточная производительность оборудования;
  • возможность нанесения тонких слоев фоторезиста с небольшим разбросом по толщине.

Недостатки этого метода:

  • трудность нанесения толстых слоев ФР (более 3 мкм);
  • наличие краевого утолщения;
  • загрязнение слоев из-за захвата пылинок из окружающей среды при вращении центрифуги (центр вращающегося диска является своеобразным центробежным насосом);
  • наличие внутренних напряжений в слое ФР;
  • необходимость тщательного контроля вязкости ФР из-за испарения растворителей и режимов работы центрифуги;
  • сложность автоматизации.

Метод распыления (пульверизация)

В литературе можно встретить термин «дисперсионный» метод. Нанесение ФР распылением производится форсункой, в которой для диспергирования струи раствора ФР при выходе из сопла используется сжатый воздух. Для получения равномерных слоев распыление выполняют движущейся форсункой на движущиеся подложки. Параметры слоя зависят от давления и температуры воздуха, расстояния от сопла форсунки до подложки, скоростей движения форсунки и подложки и от параметров ФР. Для улучшения адгезии фотослоя подложки можно нагревать. Распылением можно наносить слой на рельефные поверхности, получать слои толщиной от 0,3 до 20 мкм с точностью до 10%. Основная проблема при нанесении слоев распылением — затягивание пыли и других загрязнений струей диспергированного ФР. Распыление применяют для нанесения ФР на прямоугольные диэлектрические подложки.

Достоинства пульверизации состоят в следующем:

  • возможность изменения толщины слоя ФР в широких пределах;
  • однородность слоев по толщине;
  • отсутствие проколов (пор) и разрывов пленки;
  • отсутствие механических напряжений в слое ФР (как следствие — уменьшение дефектности слоев в 3-4 раза по сравнению с полученными центрифугированием);
  • отсутствие утолщений по краям подложек;
  • возможность нанесения ФР на профилированные подложки (в малейшие углубления и отверстия);
  • возможность нанесения ФР на поверхности большой площади;
  • меньший расход ФР (по сравнению с центрифугированием) ;
  • высокая производительность;
  • возможность групповой обработки и автоматизации.

 

Недостатки метода:

  • затягивание пыли и других загрязнений струей диспергированного ФР;
  • попадание остатков газа-носителя в слой ФР;
  • применение газа-носителя с малой температурой испарения;
  • сложность установки (как следствие — дороговизна).

Электростатический метод

Достоинства метода:

  • высокая производительность;
  • возможность наносить слой фоторезиста на подложки большой площади.

Недостатки:

  • трудность стабилизации;
  • проблема устранения пыли,
  • притягиваемой электростатическим полем;
  • сложность оборудования.

Методы окунания и полива

Достоинства:

  • нанесение слоя ФР на подложки больших размеров;
  • возможность изменения толщины слоя ФР в широких пределах на обеих сторонах подложки.

Недостатки:

  • неоднородность слоя ФР по толщине;
  • высокая вероятность загрязнения слоя ФР.

Общей особенностью нанесения жидких ФР являются трудность получения сплошных слоев заданной толщины и влияния краевых дефектов.

Метод накатки

Накатка применяется для нанесения сухих пленочных ФР, представляющих собой трехслойную ленту.

Достоинства метода:

  • простота процесса;
  • равномерность толщины в пределах 5%;
  • пригоден для нанесения ФР на подложки любого типа.

Недостатки:

  • большая толщина слоя (10-20 мкм);
  • низкая разрешающая способность.

 

Термообработка (1-я сушка) слоя.

Сушка является операцией, завершающей формирование слоя ФР, и выполняется после его нанесения. Она проходит в два этапа:

1) низкотемпературная выдержка нанесенного слоя;

2) высокотемпературная выдержка нанесенного слоя.

В процессе сушки удаляется растворитель, и в пленке ФР происходит сложный релаксационный процесс плотной упаковки молекул, уменьшающий внутренние напряжения и увеличивающий адгезию фотослоя к подложке. Растворитель при сушке необходимо удалять полностью, так как он экранирует фоточувствительные части молекул при экспонировании. Удаление растворителя проходит в две стадии:

1) диффузия изнутри слоя к границе слой -атмосфера;

2) испарение с поверхности.

Если испарение преобладает над диффузией, поверхностный слой ФР уплотняется раньше внутреннего слоя и препятствует удалению растворителя изнутри. При этом возникают внутренние напряжения, ослабляющие слой и приводящие к его разрывам. Для более равномерного высыхания фоторезист приготавливают на смесях растворителей с различными скоростями испарения. Сушку рекомендуют проводить в инертной атмосфере, так как на воздухе возможно окисление молекул ФР.

Основными параметрами процесса сушки являются температура и время, которые в значительной степени влияют на такие важные показатели ФР, как время его экспонирования и точность передачи размеров элементов после проявления. При низких температурах адгезия фотослоя к подложке плохая, преобладает сцепление между собственными молекулами полимера (когезия). Этим объясняется отслаивание фотослоя при проявлении, кроме этого, возможно неполное удаление растворителя. Слишком быстрая сушка может привести к возникновению механических напряжений в пленке. При больших температурах в ФР идет термополимеризация (при 140-200 С) и другие процессы. Так, в слое позитивного ФР при температурах выше критических, протекают те же необратимые явления, что и при экспонировании. Качество проведения сушки влияет на все остальные операции ФЛ.

Рис. 10. Зависимости потери массы ФР (1 ] и его толщины (2) от температуры сушки при длительности сушки 30 мин

На рис. 10 показаны зависимости потери массы ФР (за счет удаления растворителя) и изменения толщины слоя от температуры сушки при постоянном времени сушки.

Большое значение при сушке имеет механизм подвода теплоты.

Существуют три метода сушки:

  • конвективный,
  • инфракрасный (ИК),
  • СВЧ-поле.

Конвективная сушка выполняется в термостатах. Образующаяся на поверхности уплотненная часть слоя препятствует равномерной и полной сушке. Для равномерного испарения растворителя и снижения внутренних механических напряжений в фотослое сушку выполняют в два этапа: 15-20 мин. при 18-20 С, 30-60 мин. при 90-120 С. Недостаток метода — низкое качество ФР-слоя.

ИК-сушка отличается равномерным удалением растворителя по толщине слоя резиста, поскольку источником теплоты является сама подложка. (Примечание. ИК-излучение сначала достигает границы раздела подложка — резист и, отразившись от подложки, сильнее нагревает нижние прилегающие к подложке слои ФР). Возникает такой температурный градиент по толщине резиста, при котором наиболее холодной частью покрытия будет поверхность, а самой горячей — нижние слои, в которых испарение растворителей почти завершено. Следовательно, «фронт сушки» перемещается от подложки к поверхности слоя ФР. Поэтому у поверхности слой преждевременно не уплотняется. Время сушки понижается до нескольких минут. ИК-сушка является основным промышленным методом, применяемым в ФЛ-линиях. Она выполняется непосредственно после нанесения ФР под ИК-лампами при непрерывном продуве азотом.

При СВЧ-сушке подложки нагреваются, поглощая электромагнитную энергию СВЧ-поля. Такая сушка производится в печах мощностью 200-400 Вт при рабочей частоте 2,45 ГГц. Время сушки — несколько секунд. Достоинством метода является высокая производительность, а недостатками — сложность оборудования и необходимость тщательного экранирования рабочего объема во избежание облучения оператора, а также неравномерность сушки слоя фоторезиста на различных по электрическим характеристикам участках подложек. Поэтому СВЧ-сушке подвергают только однородные подложки.

При любом методе сушки ее режимы (время, температура) должны исключать появление структурных изменений в слое ФР.

Высушенный слой необходимо экспонировать не позднее чем через 10 ч.

Сушку подложек следует выполнять в тщательно очищенной от пыли среде. Контролируют качество сушки визуально или под микроскопом.

При нанесении слоя фоторезиста могут появиться различные виды брака.

  • Плохая адгезия ФР к подложке вызывает при последующем травлении растравливание и искажение рисунков элементов. Причиной плохой адгезии является некачественная подготовка поверхности подложек.
  • Локальные неоднородности рельефа слоя фоторезиста, имеющие вид капелек, обусловлены попаданием пылинок на подложки или присутствием посторонних частиц в ФР.
  • Микродефекты (проколы) слоя фоторезиста объясняются теми же причинами, что и локальные неоднородности рельефа.
  • Неоднородности рельефа слоя ФР в виде радиально расходящихся длинных лучей вызываются нарушением режима центрифугирования в процессе нанесения слоя (вибрацией столика при вращении).
  • Неоднородность толщины слоя ФР на подложках и разброс ее на разных подложках являются результатами перекоса столика, уменьшения частоты его вращения и увеличения времени разгона центрифуги. Отклонение толщины слоя ФР от заданной может быть также связано с изменением вязкости ФР.

Точность полученного в процессе фотолитографии (ФЛ) топологического рисунка в первую очередь определяется прецизионностью процесса формирования фоторезистивной маски.

Передача рисунка на слой резиста (т. е. формирование фотомаски (ФР)) — технологический этап, на котором в фотослое создается топологический рисунок. Данный этап состоит из следующих операций (рис. 1):

  • совмещение и экспонирование;
  • проявление;
  • термообработка (2-я сушка).

Изготовление фоторезистивной маски следует выполнять без перерывов. В обоснованных случаях допускаются перерывы между сушкой фоторезистивного слоя и совмещением и экспонированием рисунка, а также между проявлением фоторезистивной маски. При этом длительность каждого перерыва не должна превышать 3 суток, в течение которых подложки должны находиться в светонепроницаемой таре, помещенной в устройство для хранения деталей в защитной среде.

Совмещение и экспонирование

Совмещение фотошаблона (ФШ) с подложкой Совмещение выполняют на той же установке, что и последующее экспонирование, путем наложения рисунков ФШ и подложки.

Современное производство предъявляет очень жесткие требования к точности совмещения (+/-0,5 мкм и менее). Сложность процесса состоит в том, что приходится с высокой точностью совмещать элементы малых размеров на большой площади.

Точность совмещения зависит от следующих факторов:

  • точность совмещения ФШ в комплекте;
  • точность воспроизведения форм и размеров элементов рисунков в процессе ФЛ;
  • качество подложек и слоев ФР;
  • способ автоматического совмещения, качество и сохраняемость в ТП фигур автоматического совмещения;
  • разрешающая способность микроскопа;
  • совершенство механизма совмещения установки;
  • индивидуальные способности оператора.

Существуют три метода совмещения ФШ с подложкой:

  • базовый (используется в основном при первой ФЛ, когда поверхность подложки еще однородна и точность совмещения слоев не требуется), при применении которого выбранный участок подложки — «базу» (сторону) устанавливают в определенном фиксированном положении; этот метод дает точность совмещения +/-10 мкм;
  • визуальный (преобладает), когда оператор совмещает ФШ с подложкой, наблюдая за контрольными отметками; этот метод обеспечивает точность совмещения от 0,25 мкм до 1 мкм и зависит от возможности установки;
  • автоматизированный (фотоэлектрический) с помощью фотоэлектронного микроскопа, обеспечивающего погрешность совмещения не более 0,03–0,3 мкм. На сегодняшний день наибольшее применение нашли 2-й и 3-й методы, поскольку начиная со второй ФЛ, когда на подложках сформированы топологические слои, рисунок ФШ необходимо ориентировать относительно рисунка предыдущего слоя с высокой точностью.

Экспонирование

Существуют три способа экспонирования:

  • экспонирование контактным способом (соответственно и весь процесс ФЛ называют контактной ФЛ);
  • экспонирование с микрозазором;
  • проекционное экспонирование.

Экспонирование контактным способом

Выполняется после совмещения рисунков и устранения зазора до полного контакта шаблон–подложка. Нужное усилие контакта создается вакуумным или пневматическим прижимом. ФР имеют узкую спектральную область поглощения (310–450 нм) и относительно низкую фоточувствительность. Поэтому в качестве источников УФ-излучения применяют ртутно-кварцевые лампы, обеспечивающие высокую освещенность (до десятков тысяч люкс). Для согласования спектров поглощения ФР и излучения источника применяют светофильтры. Параллельность пучка излучения, необходимая для равномерной освещенности экспонируемой поверхности фотослоя, обеспечивается системой конденсоров, имеющих 1–5 кварцевых линз. Разброс освещенности в пределах рабочего поля подложки не должен превышать 5%.

При тщательной стабилизации освещенности и плотном контакте ФШ– подложка на практике процесс экспонирования контролируют временем облучения. Необходимое время экспонирования обеспечивается электромагнитным затвором, время открывания и закрывания шторки которого составляет 0,05–0,1 с, что в интервале времен экспонирования (1 с… 2 мин) обеспечивает хорошую точность.

У системы затвор–дозатор погрешность дозы при экспонировании не более 5%.

Режимы проявления слоя ФР зависят от времени экспонирования. Необходимую экспозицию устанавливают, учитывая тип и светочувствительность ФР, а также толщину его слоя.

Существенным ограничением контактной фотолитографии является неизбежность механических повреждений рабочих поверхностей ФШ и подложки, так как эти поверхности при совмещении находятся на близком расстоянии (10–15 мкм), а при экспонировании плотно прижаты друг к другу. Из-за механического износа пленочного рисунка необходима частая замена ФШ, которая требует остановок оборудования и делает нецелесообразным автоматизацию процесса экспонирования.

При контактировании ФШ вдавливает в фотослой пылинки, микрочастицы стекла и др. На ФШ налипает ФР. Кроме того, любые непрозрачные для УФ-излучения частицы, попавшие между ФШ и фотослоем, также являются причиной появления дефектов фотомаски.

Получение полного плотного контакта между ФШ и подложкой представляет собой практически неразрешимую задачу из-за изогнутости пластин, неидеальности плоскости контактируемых поверхностей, наличия между ними посторонних частиц, из-за неравномерности толщин различных пленок и фотослоя и др. Частичные воздушные зазоры приводят к усилению дифракционных эффектов и обусловливают дополнительное расширение размеров получаемого изображения.

Предельная точность совмещения при контактной ФЛ ограничена сложностью создания системы фиксации перехода от положения «зазор» к положению «контакт», поэтому при переходе от совмещения к экспонированию возможно смещение ФШ относительно подложки. Ошибки могут появиться также из-за того, что оператор совмещает рисунки ФШ и подложки, находящиеся в разных плоскостях.

Важным оптическим эффектом при экспонировании является прохождение УФ-излучения через пленку ФР. Световой поток, проходя через слой ФР, рассеивается в нем, а достигая подложки, отражается от нее и возвращается обратно в слой ФР. Дойдя до поверхности ФШ, световой поток отражается под углом от его металлизированных непрозрачных участков и через прозрачные участки попадает в слой ФР на подложке.

Эти отражения светового потока приводят к нежелательному дополнительному экспонированию участка слоя ФР находящимися под ним непрозрачными участками ФШ (рис. 5). Интенсивность отраженного потока света зависит от коэффициентов отражения подложки и ФШ. Для снижения эффекта отражения при контактной ФЛ используют цветные оксидные ФШ, имеющие малый коэффициент отражения.

ФШ с хромовым маскирующим покрытием имеют коэффициент отражения УФ-излучения (350–450 нм) 0,65, при использовании специальных низкоотражающих оксидных слоев он снижается до 0,04–0,08; у ФШ с железооксидным слоем коэффициент отражения 0,15–0,35.

Контактная ФЛ широко применяется в настоящее время и является наиболее отработанным методом, отличается высокой производительностью и невысокой стоимостью. Вследствие тесного контакта ФШ — подложка достигаются высокие разрешения. На фото — слой позитивного ФР толщиной 0,5 мкм можно передать элементы размерами 1 мкм. Тем не менее в связи с приведенными ограничениями контактной ФЛ дальнейшее совершенствование технологии получения топологии элементов ИМ, вызванное необходимостью повышения степени их интеграции, развивается в направлении применения бесконтактных методов экспонирования и уменьшения дифракционных явлений.

Экспонирование с микрозазором

Данный метод отличается от контактного экспонирования только тем, что после совмещения между подложкой и шаблоном имеется зазор 10–25 мкм, при котором и осуществляют облучение фотослоя.

Проекционное экспонирование

Проекционный метод отличается от теневых способов тем, что основан не на экранировании от равномерного потока света, а на проецировании, т. е. получении изображения, соответствующего топологии шаблона, на поверхности фотослоя с помощью оптической системы со специальным объективом (фотоувеличитель).


По материалам журнала Технологии в электронной промышленности №3’2007