Get Adobe Flash player
    Принимаются SMS-пожертвования на развитие ресурса     Копирование материалов     разрешено с обязательной ссылкой     на этот сайт     Принимаются SMS-пожертвования на развитие ресурса    

Архив за месяц: Январь 2012

TL431 регуляторы напряжения и тока

 

Варианты схем использования Tl431 для регулирования напряжения

 

На русунке е  представлена рабочая схема полноценного регулируемого блока питания 2.5-40вольт

 

На рисунке ниже представленны варианты схем использования TL431 в качестве  регулятора тока

В пример можно привести схему промышленно выпускаемого зарядного устройства

 

Схемотехника лабораторных блоков питания радиолюбителей 0-30в 5а

Первый предлагаемый блок питания (БП) рекомендован на форуме CQHAM.ru для сборки начинающими радиолюбителями.

Примечательна схема отсутствием грубых  ошибок и действительно рабочая, хотя мелкие недочеты имеются.  Хорошо симулируется в таких программах как Workbench.

С помощью этой рабочей проверенной схемы можно получить напряжение от 0 до 30 В. При этом БП не боится КЗ в нагрузке даже при максимальном напряжении на выходе, а предусмотренной в схеме защитой можно установить ток ее срабатывания от 0 до 10 А (выше не проверялся). В случае перегрузки ток удерживается на установленном значении. Воздействие ударной нагрузки в 10 А вызывает провал напряжения на 20 мВ в течение 10 микросекунд. При хороших трансформаторе (достаточно мощном, 150 Вт и больше) и фильтре пульсации на выходе не превышают 3 мВ при полной нагрузке.

Опорное напряжение 8 В получено от двух стандартных стабилизаторов 7815 и 7808, соединенных последовательно. С  первого снимается +15V для питания LM324, а со второго,  соответственно, берется +8V для опорного напряжения, подающегося на входы ОУ.

На диодах VD2, VD3 выполнено устройство задержки включения стабилизатора. Дело в том, что питание  на ОУ регулирующей платы должно установиться раньше, чем включится стабилизатор. В дальнейшем,  на работу стабилизатора, эти элементы  никак не влияют.

При включении питания, пока емкость в 47 мкФ не зарядится через резистор 3 кОм и переход Б-Э транзистора VT3, последний будет открыт и насыщен, а стабилизатор будет закрыт и напряжение на выходе стабилизатора равно нулю. Через определенное время, когда конденсатор зарядится,  напряжение на выходе стабилизатора начнет возрастать.

        Усиленный сигнал с вывода 7 ОУ DA1 подается на вход компаратора DA4. Как только напряжение на его 10 ножке превысит напряжение, установленное  на 9 ножке, компаратор переключится и своим током через светодиод начнет открывать транзистор VT3. Напряжение на выходе блока начнет снижаться, компаратор DA4 переключится — напряжение начнет расти и т.д. Порог срабатывания DA4 однозначно определяется пороговым напряжением на 9 ножке, а оно выставляется (т.о. устанавливается требуемое напряжение).

Аналогично работает канал токового регулирования — только работает DA3.
Остальная часть схемы БП особенностей не имеет.

В БП применена распространенная микросхема LM324 (в ее составе четыре  ОУ). Транзисторы можно поставить любые мощные n-p-n, но с 150-200% запасом по току нагрузки и соответствующим допустимым напряжением. Например, до 10 А хорошо работают 3-4 транзистора типа КТ819АМ – ГМ (А1-Г1). При желании получить 50 А в нагрузке,  нужно установить КТ829 на радиатор и увеличить количество выходных транзисторов КТ827 до 6-8,  с соответствующими выравнивающими резисторами в цепи эмиттера. Следует предостеречь «любителей большого тока» — если у Вас после выпрямителя и фильтра, допустим, 30 В, а вы снимаете с выхода БП 12 В при 10 А в нагрузке, то 180 Вт никакие транзисторы не выдержат.

Диоды VD2, VD3 — любые кремниевые на ток 1А.

материалы:

 Радиокот

 Леонид Кривенко. Блок питания для начинающих

Второй вариант лабораторного блока питания

                                                                                  DOUBLE LAB POWER SUPPLY

                                                                                выходное напряжение 0…30 В/ 0-5А

 

Изюминка этого БП заключается в применении U4 (TL431 — подстраиваемого трёхвыводного источника опорного напряжения) и в его “обвязке”. Питаемый нестабилизированным напряжением через развязывающую цепочку R31, R32, C7, он выдаёт опорное напряжение 12 В. Делитель R15, R16 делит это напряжение на два и выдаёт 6 В при эквивалентном импедансе в 12 кОм, а через R3 снимается образец выходного напряжения. В сумме: при выходном напряжении 0 В, на U1B примерно 5 В, при выходном напряжении 30 В, на U1B — 10,8 В.

Так как напряжение на входе ОУ не опускается до 0 В, то Вам и не нужна отрицательная шина для того, чтобы заставить ОУ работать. Я знаю, что есть ОУ, которые используются в схемах с несимметричным включением, но они, как правило, работают хуже. Итак, для получения хороших динамических характеристик блока питания используйте в нём быстродействующие ОУ.

U1A обеспечивает токоограничение, датчиком для которого служит резистор R11. С номиналами, приведёнными на схеме ограничение тока может устанавливаться от 0 до 500 мА. Чтобы получить другое максимальное значение, измените номинал R11, например, при диапазоне установки ограничения 0…1 А R11 = 0,5 ом, при 0…5 А R11 = 0,1 ом (при нескольких регулирующих транзисторах, включенных впараллель).

Компенсация и стабильность.

Главной проблемой является то, что в этой схеме имеется усиление в петле обратной связи. Это происходит из-за того, что проходной транзистор используется в схеме с общим эмиттером, тогда как в большинстве блоков питания это — эмиттерный повторитель. Операционные усилители компенсированы только для коэффициента усиления 1. А вот несколько способов повышения стабильности, в данной ситуации.

Прежде всего, нужно уделить внимание включению выходного конденсатора С1 относительно сопротивления нагрузки. Его нужно включать именно таким образом, иначе, при подключении ёмкостной нагрузки, можно получить нарушение стабильности блока питания. Конденсатор С2 обеспечивает частичную компенсацию по фронту (по нарастанию) напряжения, цепочка R29C4 — по спаду. Компенсация была подобрана в практической рабочей схеме на макетной плате по максимальному динамическому диапазону, обеспечиваемому блоком питания. (Видимо, по наименьшему изменению выходного напряжения при быстрых изменениях тока нагрузки от нуля до максимума и наоборот).

Токоограничительная петля также компенсирована, но для цели повышения стабильности её постоянная времени больше (она работает медленнее), чем в петле обратной связи по напряжению. Таким образом, если у Вашего БП на выходе случилось короткое замыкание, тут же “разгорается битва” между двумя петлями обратной связи. Через несколько сотен микросекунд обратная связь по напряжению “:побеждает” и лишь небольшой “пичок” тока проскакивает на выход БП. Это та плата, которую платите Вы за довольно широкий динамический диапазон БП и прецизионную установку порога ограничения тока. Это, однако, не приносит вреда никому и ничему.

Рабочая схема. Отлично симулируется в Workbench

Примечания:

  1. Выходная цепь во всём диапазоне напряжений от 0 до 30В не нуждается в дополнительной минусовой шине.

  2. Обеспечивается низкое падение напряжения.

  3. Конденсаторы С5 и С8 обеспечивают развязку.

  4. С1, С2, R29, С4, R35, С11 обеспечивают компенсацию, тщательно настраиваемую для получения хороших динамических характеристик. Схема перестаёт работать стабильно, если убрать хотя бы один из этих элементов.

  5. R22 потребляет небольшой ток с выхода, чтобы проходной транзистор оставался открытым (это позволяет сохранять хорошую динамику блока). Это также позволяет устанавливать выходное напряжение равным нулю при отсутствии нагрузки. Чтобы не мешать работе схемы ограничения тока, R22 подключен перед резистором-датчиком R11.

  6. Не показано соединение с корпусом ни того, ни другого выходного “полюса”, соединять с корпусом можно любой из них (но не оба сразу – Hi !) или использовать “плавающее” питание. Металлическое шасси для безопасности лучше, конечно же, заземлить.

CURRENT LIMIT = “Ограничение тока”. Heat Sink — радиатор. Bridge – мост.

Список деталей

Q3, Q4 — 1N4002
LD1 — светодиод красного цвета (индикация включения ограничения тока)
Q2 — 2N3904
Q6 — 2N3906
Q8 — 2N5551
Q1, Q7, R1 — TIP 147 (схема Дарлингтона)
U1 — LM358 (для лучшей динамики схемы U1B заменить на TL071 / TL072 )

www.cqham.ru

 

Электронная нагрузка.

Электронная нагрузка  имеет плавную регулировку от 0 до 20А (при желании и выше).

Конструкция выполнена в корпусе от компьютерного блока питания с уже имеющимся в нём вентилятором (для обдува радиатора на котором выполнена схема навесным монтажом). Радиатор  от компьютерного процессора. Силовые транзисторы конструкции выбираются исходя из того какой максимальный ток нагрузки вы желаете получить, соответственно подбирается измерительная головка с шунтом.
Испытуемый блок питания подключается к входным клеммам эл. нагрузки и резистором R6 выставляется желаемый ток.

 

www.cqham.ru